Phenotypic assays for β-amyloid in mouse embryonic stem cell-derived neurons.

نویسندگان

  • Laura Beth J McIntire
  • Natalie Landman
  • Min Suk Kang
  • Gina M Finan
  • Jeremy C Hwang
  • Ann Z Moore
  • Lydia S Park
  • Chyuan-Sheng Lin
  • Tae-Wan Kim
چکیده

Given the complex nature of Alzheimer's disease (AD), a cell-based model that recapitulates the physiological properties of the target neuronal population would be extremely valuable for discovering improved drug candidates and chemical probes to uncover disease mechanisms. We established phenotypic neuronal assays for the biogenesis and synaptic action of amyloid β peptide (Aβ) based on embryonic stem cell-derived neurons (ESNs). ESNs enriched with pyramidal neurons were robust, scalable, and amenable to a small-molecule screening assay, overcoming the apparent limitations of neuronal models derived from human pluripotent cells. Small-molecule screening of clinical compounds identified four compounds capable of reducing Aβ levels in ESNs derived from the Tg2576 mouse model of AD. Our approach is therefore highly suitable for phenotypic screening in AD drug discovery and has the potential to identify therapeutic candidates with improved efficacy and safety potential.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Cholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA

Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

Effects of Mouse Strain on Establishment of Embryonic Stem Cell Lines

Purpose: Embryonic stem (ES) cells are derived from the inner cell mass of blastocysts with self-renewal and pluripotency characteristics. These cells have potential for studies of in vitro differentiation, gene function, etc. This study was, therefore, initiated to establish new ES lines and evaluate the effects of strain on ES cell production. Materials and Methods: 3-5 day blastocysts were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemistry & biology

دوره 20 7  شماره 

صفحات  -

تاریخ انتشار 2013